Simulated yield and profitability of five potential crops for intensifying the dryland wheat-fallow production system

نویسندگان

  • S. A. Saseendran
  • David C. Nielsen
  • L. R. Ahuja
  • L. Ma
  • Drew J. Lyon
چکیده

Greater precipitation use efficiency (PUE) and economic returns by increasing cropping frequency through the addition of summer crops to the dryland winter wheat-fallow (WF) cropping system have been reported in the semiarid Central Great Plains of USA. However, due to the highly variable nature of precipitation and uncertain water availability, selection of a crop with assured positive net returns to add to the system to increase cropping frequency is a challenge in the absence of reliable seasonal precipitation forecasts. The objective of this study was to evaluate long-term yields and net returns of several potential summer crops at various soil water contents at planting to assess their potential use in increasing dryland cropping frequency. Three grain crops [corn (Zea mays L.), canola (Brassica napus), and proso millet (Panicum miliaceum L.)] and two forage crops [foxtail millet (Setaria italica L. Beauv.) and spring triticale (X Triticosecale rimpaui Wittm.)] for which the Root Zone Water Quality Model (RZWQM2) had been calibrated at Akron, CO and/or Sidney, NE, were selected for investigation through modeling. The calibrated model was used to simulate yield responses of the crops to 25, 50, 75 and 100% of plant available water (PAW) in the soil profile at planting using recorded weather data from Akron, CO and Sidney, NE (1948-2008). Average costs of production and 10-yr average commodity prices for northeast Colorado were used to calculate net returns for each of the crops at the varying PAW levels. All crops showed significant (p < 0.05) simulated yield increases in response to increasing initial PAW levels when those changes occurred in the entire 0–180 cm soil profile. The two forage crops gave greater net returns than the three grain crops for all initial PAW levels when calculated with 10-yr average prices received. Among the grain crops, proso millet was slightly more profitable than corn at Akron, while corn was the least profitable crop at Sidney. Using current commodity prices (13 September 2011) resulted in proso millet being the least profitable crop at Sidney, while corn was the most profitable grain crop at Akron and showed net returns that were similar to those found for the forage crops. The results of this study may guide the selection of a springor summer-planted crop and help farmers assess risk as they contemplate intensifying the WF system by using a measure or estimate of PAW at planting. Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the efficiency of APSIM-Wheat model for simulation of phenology and grain yield of bread wheat (Triticum aestivum L.) in drylands of west and northwest of Iran

Crop simulation models are valuable tools for prediction of crop performance under various weather conditions and allow designing methods to limit the negative impacts of adverse environmental constraints. Agricultural Production Systems sIMulator (APSIM) is a comprehensive model that simulates the performance of a wide range of crops in response to climatic, soil and management factors. In thi...

متن کامل

Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas

Dryland wheat (Triticum aestivum L.) and grain sorghum (Sorghum bicolor (L.) Moench) are often grown using a wheat–sorghum-fallow (WSF) crop rotation on the semiarid North American Great Plains. Precipitation stored during fallow as soil water is crucial to the success of the WSF rotation. Stubble mulch-tillage (SM) and no-tillage (NT) residue management practices reduce evaporation, but the sp...

متن کامل

Evaluating decision rules for dryland rotation crop selection

No-till dryland winter wheat (Triticum aestivum L.)-fallow systems in the central Great Plains have more water available for crop production than the traditional conventionally tilled winter wheat-fallow systems because of greater precipitation storage efficiency. That additional water is used most efficiently when a crop is present to transpire the water, and crop yields respond positively to ...

متن کامل

Pratylenchus neglectus Reduces Yield of Winter Wheat in Dryland Cropping Systems

Rainfed wheat (Triticum aestivum L.) is planted each year on 1.5 million ha in the low-precipitation region (150 to 300 mm) of north-central Oregon and south-central Washington. Precipitation occurs mostly (75%) from late autumn (October) to early spring (April) and the amount is highly variable from year to year. Winters are cold and intervals of frozen soil are common. Warm to hot days and co...

متن کامل

NITROGEN MANAGEMENT Nitrogen Fertilization and Rotation Effects on No-Till Dryland Wheat Production

and Reule, 1994; Norwood, 2000; Peterson et al., 1993; Schlegel et al., 2002). No-till (NT) production systems, especially winter wheat (Triticum Dhuyvetter et al. (1996) reported that the more intenaestivum L.)–summer crop–fallow, have increased in the central Great sive cropping systems had higher profit potential than Plains, but few N fertility studies have been conducted with these systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013